基础篇:电阻
电阻,又称为电阻器
导电体对电流的阻碍作用称着电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。
一、电阻的型号命名方法:
国产电阻器的型号由四部分组成(不适用敏感电阻)
第一部分:主称 ,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。
第二部分:材料 ,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频 、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等
例如:R T 1 1 型普通碳膜电阻
二、电阻器的分类
1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数
1、标称阻值:电阻器上面所标示的阻值。
2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。
允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级
3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。
线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500
非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100
4、额定电压:由阻值和额定功率换算出的电压。
5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。
6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。
7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。
8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。
9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。
在电脑主板上,绝大部分是使用贴片电阻,在电源盒中,用贴片电阻就比较少了,一般用金属膜电阻、组绕电阻和水泥电阻。
电阻阻值有直接编号和色环法,直接编号我不说你也知道,下面主要介绍色环电阻的识别
目前,电子产品广泛采用色环电阻,其优点是在装配、调试和修理过程中,不用拨动元件,即可在任意角度看清色环,读出阻值,使用方便。一个电阻色环由4部分组成[不包括精密电阻]
四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。
下面介绍掌握此方法的几个要点:
(1)熟记第一、二环每种颜色所代表的数。可这样记忆:
棕=1
红=2,
橙=3,
黄=4,
绿=5,
蓝=6,
紫=7,
灰=8,
白=9,
黑=0。
此乃基本功,多复诵,一定要记住!!!!!!!
记准记牢第三环颜色所代表的 阻值范围,这一点是关键。具体做法是:
金色:几点几 Ω
黑色:几十几 Ω
棕色:几百几 Ω
红色:几点几 kΩ
橙色:几十几 kΩ
黄色:几百几 kΩ
绿色:几点几 MΩ
蓝色:几十几 MΩ
从数量级来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红是千欧级橙"、黄色是十千欧级的;绿是兆欧级、蓝色则是十兆欧级的。这样划分一下是为了便于记忆。
(3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百 kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。
(4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。
下面举例说明:
例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ
的,按照黄、橙两色分别代表的数"4"和"3"代入,,则其读数为4.3kΩ。第环是金色表示误差为5%。
例2当四个色环依次是棕、黑、橙、金色时,因第三环为橙色,第二环又是黑色,阻值应是整几十kΩ的,按棕色代表的数"1"代入,读数为10 kΩ。第四环是金色,其误差为5%。
大功率电阻
金属膜电阻
线绕电阻,无感性电感电阻
水泥型绕线电阻
贴片电阻
电容电容
电容,又称为电容器
容纳和释放电荷的电子元器件叫做电容,用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF
电容是电子设备中大量使用的电子元件之一,电容的用途非常多,主要有如下几种:
1.隔直流:作用是阻止直流通过而让交流通过。
2.旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路
4.滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。
5.温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6.计时:电容器与电阻器配合使用,确定电路的时间常数。
7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
8.整流:在预定的时间开或者关半闭导体开关元件。
9.储能:储存电能,用于必须要的时候释放。例如相机闪光灯,加热设备等等。(如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
电容就是两块导体(阴极和阳极)中间夹着一块绝缘体(介质)构成的电子元件。电容的种类首先要按照介质种类来分。这当中可分为无机介质电容器、有机介质电容器和电解电容器三大类。不同介质的电容,在结构、成本、特性、用途方面都大不相同。
一、电容器的型号命名方法
国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、
分类和序号。
第一部分:名称,用字母表示,电容器用C。
第二部分:材料,用字母表示。
第三部分:分类,一般用数字表示,个别用字母表示。
第四部分:序号,用数字表示。
用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介
二、电容器的分类
1、按照结构分三大类:固定电容器、可变电容器和微调电容器。
2、按电 解质 分类有:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等。
3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。
4、频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器。
5、低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。
6、滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。
7、调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。
8、高频耦合:陶瓷电容器、云母电容器、聚苯乙烯电容器。
9、低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器。
10、小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。
三、常见的电容器
无机介质电容器:包括大家熟悉的陶瓷电容以及云母电容,在CPU上我们会经常看到陶瓷电容。陶瓷电容的综合性能很好,可以应用GHz级别的超高频器件上,比如CPU/GPU。当然,它的价格也很贵。
有机介质电容器:例如薄膜电容器,这类电容经常用在音箱上,其特性是比较精密、耐高温高压。
双电层电容器:这种电容的电容量特别大,可以达到几百f(f=法,电容量单位,1f=100000μf)。因此这种电容可以做UPS的电池用,作用是储存电能。
电解电容器:由于主板、显卡等产品使用的基本都是电解电容,因此这是我们要讲的重点。大家熟悉的铝电容,钽电容其实都是电解电容。
电解电容器特点一:单位体积的电容量非常大,比其它种类的电容大几十到数百倍。
电解电容器特点二:额定的容量可以做到非常大,可以轻易做到几万μf甚至几f(但不能和双电层电容相比)。
电解电容器特点三:价格比其它种类具有压倒性优势,因为电解电容的组成材料都是普通的工业材料,比如铝等等。制造电解电容的设备也都是普通的工业设备,可以大规模生产,成本相对比较低。
基础篇:电感电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH),1H=10^3mH=10^6uH。
如果两个线圈互相靠近,当其中一个线圈中电流所产生的磁通有一部分与另-个线圈的磁通相环链,那么,这个线圈中的电流发生变化时,会在另一个线圈中产生感应电动势,这种现象称为"互感"。电感是"自感"和"互感"的总称,自感的符号用"L",互感的符号用"M"。电感的单位是"亨利",简称"亨"。电感元件在电路中除了储存有磁场能量外,通过电感元件的电流不能突变,电感元件在直流电路中相当于短路(忽略线圈的电阻)。在交流电路中,电感元件的感抗随频率的增高而增大。
一、电感的分类
按电感形式分类:固定电感、可变电感。
按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。
按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈
按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。
二、电感线圈的主要特性参数
1、电感量L
电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。
2、感抗XL
电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL
3、品质因素
品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。 线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。
4、分布电容
线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。
三、常用线圈
1、单层线圈
单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。
2、蜂房式线圈
如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小
3、铁氧体磁芯和铁粉芯线圈
线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。
4、铜芯线圈
铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。
5、色码电感器
色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。
6、阻流圈(扼流圈)
限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。
7、偏转线圈
偏转线圈是电视机扫描电路输出级的负载,偏转线圈要求:偏转灵敏度高、磁场均匀、Q值高、体积小、价格低。
二极管二极管的工作原理
晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。
一、根据构造分类
半导体二极管主要是依靠PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:
1、点接触型二极管
点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。
2、键型二极管
键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。其特性介于点接触型二极管和合金型二极管之间。与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。多作开关用,有时也被应用于检波和电源整流(不大于50mA)。在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。
3、合金型二极管
在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。正向电压降小,适于大电流整流。因其PN结反向时静电容量大,所以不适于高频检波和高频整流。
4、扩散型二极管
在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。
5、台面型二极管
PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。初期生产的台面型,是对半导体材料使用扩散法而制成的。因此,又把这种台面型称为扩散台面型。对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。
6、平面型二极管
在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。
7、合金扩散型二极管
它是合金型的一种。合金材料是容易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。此法适用于制造高灵敏度的变容二极管。
8、外延型二极管
用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。
9、肖特基二极管
基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。
二、根据用途分类
1、检波用二极管
就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。
2、整流用二极管
就原理而言,从输入交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。
3、限幅用二极管
大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。
4、调制用二极管
通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。
5、混频用二极管
使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。
6、放大用二极管
用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。
7、开关用二极管
有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。
8、变容二极管
用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, 使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。
9、频率倍增用二极管
对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显著地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。
10、稳压二极管
是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型。
稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。
10-1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
10-2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。
11、PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是“本征”意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和“本征”层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,“本征”区的阻抗很高;在直流正向偏置时,由于载流子注入“本征”区,而使“本征”区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
12、 雪崩二极管 (Avalanche Diode)
它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。
13、江崎二极管 (Tunnel Diode)
它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。其主要参数有峰谷电流比(IP/PV),其中,下标“P”代表“峰”;而下标“V”代表“谷”。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。
14、快速关断(阶跃恢复)二极管 (Step Recovary Diode)
它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成“自助电场”。由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个“存贮时间”后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的“自助电场”缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。
15、肖特基二极管 (Schottky Barrier Diode)
它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
16、阻尼二极管
具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。
17、瞬变电压抑制二极管
TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。
18、双基极二极管(单结晶体管)
两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。
19、发光二极管
用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。
三、根据特性分类
点接触型二极管,按正向和反向特性分类如下。
1、一般用点接触型二极管
这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。
2、高反向耐压点接触型二极管
是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。
3、高反向电阻点接触型二极管
正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。
4、高传导点接触型二极管
它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。
晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别
常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用
晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态
截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。
根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。
使用多用电表检测三极管
三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。
三极管类型的判别: 三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。
电子三极管
在弗莱明为改进无线电检波器而发明二极管的同时,美国物理学博士弗雷斯特也在潜心研究检波器。正当他的研究步步深入时,传来了英国的弗莱明发明成功真空二极管的消息,使他大受震动。是改弦易辙还是继续下去呢?他想到弗莱明的二极管可用于整流和检波,但还不能放大电信号。于是,德弗雷斯特又 经过两年的研制,终于改进了弗莱明的二极管,作出了新的发明。在二极管的阴极和阳极中间插入第三个具有控制电子运动功能的电极(棚极)。棚极上电压的微弱信号变化,可以调制从阴极流向阳极的电流,因此可以得到与输入信号变化相同,但强度大大增加的电流。这就是德弗雷斯特发明的三极管的“放大”作用。
1912年,德弗雷斯特又成功地做了几个三极管的连接实验,得到了比单个三极管大得多的放大能力。很快,德弗雷斯特研制出第一个电子放大器用于电话中继器,放大微弱的电话信号,他是在电话中使用电子产品的第一人。此外,三极管还可振荡产生电磁波,也就是说,所以,国外许多人都将三极管的发明看作是电子工业真正的诞生。
MOS场效应管
即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。
国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。
MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。下面介绍检测方法。
1.准备工作
测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。
2.判定电极
将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。
3.检查放大能力(跨导)
将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。
目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。
VMOS场效应管
VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从图1上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS场效应管。
VMOS管的检测方法
1.判定栅极G
将万用表拨至R×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。
2.判定源极S、漏极D
由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。
3.测量漏-源通态电阻RDS(on)
将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。
由于测试条件不同,测出的RDS(on)值比手册中给出的典型值要高一些。例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。
4.检查跨导
将万用表置于R×1k(或R×100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。
注意事项:
(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P沟道管,测量时应交换表笔的位置。
(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。
(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。例如美国IR公司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。
(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000μS。适用于高速开关电路和广播、通信设备中。
(5)使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30W
场效应晶体管
场效应晶体管(FET)简称场效应管,它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
场效应晶体管的好坏的判断。
先用MF10型万用表R*100KΩ挡(内置有15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再该用万用表R*1Ω挡,将负表笔接漏极(D),正表笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。
晶振常说的晶振一般叫做晶体谐振器,是一种机电器件,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。这种晶体有一个很重要的特性,如果给他通电,他就会产生机械振荡,反之,如果给他机械力,他又会产生电,这种特性叫机电效应。他们有一个很重要的特点,其振荡频率与他们的形状,材料,切割方向等密切相关。由于石英晶体化学性能非常稳定,热膨胀系数非常小,其振荡频率也非常稳定,由于控制几何尺寸可以做到很精密,因此,其谐振频率也很准确。
晶振:石英晶体振荡器(crystal oscillator),
谐振器(Resonator):在电路中等效作用是一个具有选频作用的网络,是振荡电路核心元器件,决定了振荡器的频率稳定度(Frequency stability)种类有:石英晶体,陶瓷,LC,介质等材料的谐振器。石英晶体与放大电路配合如果行成正反馈,并且回路放大系数大于一则产生自激振荡信号。这就是石英晶体器的基本原理。
1、 晶振:即所谓石英晶体谐振器和石英晶体时钟振荡器的统称。不过由于在消费类电子产品中,谐振器用的更多,所以一般的概念中把晶振就等同于谐振器理解了。后者就是通常所指钟振。
2、 分类。首先说一下谐振器。
谐振器一般分为插件(Dip)和贴片(SMD)。插件中又分为HC-49U、HC-49U/S、音叉型(圆柱)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49U/S一般称49S,俗称“矮型”。音叉型按照体积分可分为3*8,2*6,1*5,1*4等等。贴片型是按大小和脚位来分类。例如7*5(0705)、6*3.5(0603),5*3.2(5032)等等。脚位有4pin和2pin之分。
而振荡器也是可以分为插件和贴片。插件的可以按大小和脚位来分。例如所谓全尺寸的,又称长方形或者14pin,半尺寸的又称为正方形或者8pin。不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。而从不同的应用层面来分,又可分为OSC(普通钟振),TCXO(温度补偿),VCXO(压控),OCXO(恒温)等等。
指针式万用表使用方法说明:指针式万用表是业余维修人员使用时的首选。另外我们在以后的内容中提供的测量方法和数据,也是以指针式万用表为准。为此有必要介绍一下指针式万用表的使用方法,供需要了解此内容的读者参考。
万用表的使用方法
万用表可以测量电阻、直流电压、交流电压和直流电流等物理量。
下面我们以 U-20 型万用表为例说明万用表的使用方法(万用表面板见附图 1)。在测量电阻、电压、电流以前,应先检查表针是否在 0 刻度的位置上;如不在 0 的位置上,可调整表中心机械调零螺丝使表针指在 0 位置上。
表针调零后,再把两根表笔插在插孔中,红色表笔插在注有 “ +”(读正)的插孔内,黑色表笔插在注有 “ -”(读负)的插孔内。另外还应检查一下电池是否接好(此表使用两节5 号电池)。
一、测量电阻的方法
(1) 选挡:欧姆挡的标志是 Ω,在 Ω 挡的两条框线内有 ×1、 ×10、 ×100、 ×1k 四挡。根据要测量的电阻数值选择合适的挡位,如我们要测量一下一只 30kΩ 的电阻是否准确,就要选择 ×1k 挡(“ ×”是乘的意思),这样才能保证表针在测量时指在刻度线中间位置附近(刻度线中间的刻度清晰,测量误差也小),测量不知阻值的电阻,则要用各挡试一下,找出能使表针停在中间左右的挡位。
(2) 欧姆调零:选好挡以后,要先进行欧姆调零,即把两根表笔短路(测试表笔的铜头碰在一起),看指针是否指在第 1 条刻度线(最上面一条刻度线)右边零的位置上,如不在零位上就应调整欧姆调零旋钮,使指针达到零位,若调欧姆调零旋钮调到头指针还调不到零,则说明电表内电池电压太低了,应更换新电池。每换一挡都要调零。
(3) 表笔接法:测量电阻时,直接用万用表的两根表笔接触被测电阻的两根引出线即可。但应注意两只手切忌同时捏住表笔的两根铜头(如附图 2 下图所示),那样做等于把手的电阻并联在被测电阻两端了,会大大影响测量准确性。
(4) 读数方法:根据被测电阻的大小,表针停留在表盘中的某一位置,观察表针在第 1 条刻度线(标有 Ω 的一条)上所指示的数值,然后乘上选择开关所在的挡位,即这个电阻的阻值。比如指针指在第一条刻度线 40 的位置上,而选择开关在 ×10 的位置上,则这时被测电阻的阻值为 40×10 =400Ω。另外刻度线的标志数字是间隔标着的,如第一条刻度线 0 以后就是 5,5 以后是 10……中间的数字没标注,这时可根据刻度盘上的小刻度来算出。比如 0 到 5 之间有 5 个大格,每个大格就代表数字 1,比如指针指在第三个大格上,那就代表数字 3,依此类推。
二、直流电压的测量
(1) 选挡:直流电压挡用 “V -” 表示(“V”表示电压,“ -”表示直流)也有的万用表用 “DC” 表示。在此表 “V -” 框线内有 0.5、2.5、10、50、250、500 六挡。选择电压挡时,如已知一电压为 20V 左右,为了检查这个电压的准确数值,就可以选择比这个被测电压值略高的 50V 挡。如果某被测电压不知数值,则应先从500V 挡开始选取,如表针动得很小,则说明这个被测电压较低,再依次选择以下各挡,使指针能够指示在较清晰的刻度上。电压的六个挡所标数字表示这一挡能够测量的最高电压,即满度时的电压值。比如 50 这一挡,就表示这挡只能测量 50V 以下的电压,也就是指针指在最右边的时候是 50V。
(2) 表笔接法:测量直流电压,红表笔要接被测电压的正极端,黑笔要接被测电压的负极端。
(3) 读数方法:根据表针停留的位置,看刻度盘第②条(标有 mA、V?)刻度上的数字,再根据选择开关所在的挡位读出被测电压的数值。如选择开关在 50 挡上,而指针在 20 的刻度上,则这时被测电压为 20V。这样的读数比较好读,因为表盘上就有 0 ~ 50 的刻度。如选择的挡位表盘上没有直接的标数,就要稍微换算一下。比如选择 500V 这挡,表盘的刻度右边没有 500 这个标志数,只有 50 和25 这两条标志数。这时就要利用 50 或 25 这两条中的任一条刻度来换算,一般选能和 10 成倍数的这样较容易换算。比如用 500V 挡就可以选 0 ~ 50 这条刻度线,把读出的数都乘 10 就可以了。若用 500V 这挡指针停在 20 的位置,实际被测电压的数值就是 200V。
三、交流电压的测量
(1) 选挡:交流电压挡用 “V ~ ”(“V”表示电压,“ ~ ”表示交流),也有的万用表用“AC” 表示。在 “V ~” 框线内有 10、50、250、500 四挡。选挡方法同直流电压挡。附图 4 万用表测量电流时的接法
(2) 表笔接法:测量交流电压时,表笔并联在被测电压两端,表笔不分正、负。
(3) 读数方法:500、250、50 三挡读第 2条刻度线,10V 挡读第 3 条标有 “10V ~ ” 的刻度线。读数方法同直流电压挡。
四、直流电流的测量
(1) 选挡:直流电流挡用 “mA” 表示,在“mA” 框线内有 0.1、5、50、500 四挡。选挡方法同直流电压挡。
(2) 表笔接法:测量直流电流表笔串联在电路中间,并且红表笔应接在靠近电源正极一边,黑表笔接在靠近电源负极一边。一般在电路图中把要测量电流的地方画一个 “ ×”,即表示从这个地方把电路断开,串入电流表。
(3) 读数方法:读第 2 条刻度线的标志数,读数原则同直流电压挡。
除了以上用途外,U-20 型万用表还可以测量三极管的 hFE,即集电极电流 “Ic” 与基极电流 “Ib” 之比,也就是β。
测量方法是:首先将选挡开关旋至 Ω ×10 挡,将测试表笔短路,调节欧姆调零旋钮,使指针指在 0 位,分开测试表笔,把选择开关旋至 hFE挡,将被测三极管插入 “PNP” 或“NPN”(表上标注“N”或“P”)的插孔内,注意管子的发射极、基极、集电极要分别插入相应的 e、b、c插孔,不能插错。读数看第 4 条刻度(绿色),直接读出数值。
整流电路整流,就是把交流电变为直流电的过程。
由于电力网供给用户的是交流电,而我们所使用各种家电之类的都需要用直流电,所以,就需要这个整流电路把交流电变为直流电,以便使用。
我们可以利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。其中,晶体二级管就是很方便实用的元器件。下面我给大家讲一下利用晶体二极管组成的各种整流电路。
一、半波整流电路
图1是一种最简单的整流电路。它由电源变压器 B 、整流二极管 D 和负载电阻 Rfz 组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D再把交流电变换为脉动直流电。
下面从图2的波形图上看着二极管是怎样整流的
图2 半波整流波形
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。在0~K时间内,e2 为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,
e2 通过它加在负载电阻 Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。这时 D 承受反向电压,不导通, Rfz 上无电压。在π~2π时间内,重复 0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过 Rfz ,在 Rfz 上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc=0.45 e2 )因此常用在高电压、小电流的场合,因此一般很少采用.
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a、e2b ,构成 e2a 、D1、Rfz 与 e2b D2、Rfz ,两个通电回路。
全波整流电路的工作原理,可用图4 所示的波形图说明。在0~π 间内,e2a 对 Dl 为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b; 对 D2 为反向电压,D2 不导通(见图4(b)。在π-2π时间内,e2b 对 D2 为正向电压,D2 导通,在 Rfz 上得到的仍然是上正下负的电压;e2a; 对D1 为反向电压,D1 不导通(见图4(C)。
如此反复,由于两个整流元件 D2 轮流导电,结果负载电阻Rfz 上在正、负两个半周作用期间,都有同一方向的电流通过,如图4(b)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc =0.9 e2,比半波整流时大一倍)。
图3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。
三、桥式整流电路图5(a )为桥式整流电路图,(b)图为其简化画法。
图5(a)为桥式整流电路图 图5(b)图为其简化画法
桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。
桥式整流电路的工作原理如下:e2 为正半周时,对 D3 和方向电压,Dl,D3 导通;对 D2 、D4 加反向电压,D2 、D4 截止。电路中构成 e2 、Dl、Rfz 、D3 通电回路,在 Rfz 上形成上正下负的半波整洗电压,
e2 为负半周时,对 D2 、D4 加正向电压,D2 、D4 导通;对 D1 、D3 加反向电压,D1 、D3 截止。电路中构成 e2 、D2、Rfz 、D4 通电回路,同样在 Rfz 上形成上正下负的另外半波的整流电压。
上述工作状态分别如图6(A) (B)所示。
如此重复下去,结果在 Rfz 上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半.
滤波电路交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。电容器的容量越大,负载电阻值越大,充电和放电所需要的时间越长。这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务
图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9a所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2 向负载电阻Rfz 提供电流的同时,向电容器C充电,一直充到最大值。e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D 受反向电压,不能导通,于是Uc便通过负载电阻Rfz 放电。由于C和Rfz 较大,放电速度很慢,在e2 下降期间里,电容器C上的电压降得不多。当e2 下一个周期来到并升高到大于Uc时,又再次对电容器充电。如此重复,电容器C两端(即负载电阻Rfz :两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。通常应根据负载电用和输出电说的大小选择最佳电容量。表中所列滤波电容器容量和输出电流的关系,可供参考。 电容器的耐压值一般取Use的1.5倍。
输出电流
2A左右
1A左右
0.5-1A左右
0.1-0.5A
100-50mA
50mA以下
滤波电容
4000u
2000u
1000u
500u
200u-500u
200u
串联型稳压电路串联型稳压电路是最常用的电子电路之一,它被广泛地应用在各种电子电路中,它有三种表现形式。
1、如图1所示,这是一种最简单的串联型稳压电路(有些书称它是并联型稳压电路,我个人始终认为应是串联型稳压电路),电阻RL是负载电阻,R为稳压调整电阻有叫限流电阻,D为稳压管。这种电路输出的稳压值等于D的标称稳压值,其工作原理是利用稳压管工作在反向击穿的特性来实现的。图2是稳压管的伏安特性曲线,从此曲线中我们看到反向电流在一定范围内大幅变化时其端点的电压基本不变。当RL变小时,流过RL的电流增加,但流过D的电流却减少,当RL变大时,流过RL的电流减少,但流过D的电流却增大,所以由于D的存在使流过R的电流基本恒定,在R上的压降也基本不变,所以使其输出的电压也基本保持不变。
当负载要求较大的输出电流时,这种电路就不行了,这是因为在此时R的阻值必须减少,由于R的减少就要求D有较大的功耗,但因目前一般的稳压管的功耗均较小,所以这种电路只能给负载提供几十毫安的电流,彩电30V调谐电压通常都以这种电路来取得。
2、如图3所示,这种电路是针对上面所说电路的缺点而改进的电路,与第一种电路不同的是将电路中的R换成晶体管BG,目的是扩大稳压电路的输出电流。我们知道,BG的集电极电流IC=β*Ib,β是BG的直流放大系数,Ib是晶体管的基极电流,比如现在要向负载提供500MA的电流,BG的β=100,那末电路只要给BG的基极提供5MA的电流就行了。所以这种稳压电路由于BG的加入实际上相当于将第一种稳压电路扩充了β倍,另外由于BG的基极被D嵌定在其标称稳压值上,因此这种稳压电路输出的电压是V0=VD-0.7v,0.7V是BG的B,E极的正偏压降。
在实际应用中,我们常常对不同的电路提供不同的供电电压,即要求稳压电源的输出电压可调,为此出现了第三种形式的串联形稳压电路。
3、第二种稳压电路虽能提供较大的输出电流,但其输出电压却受到稳压管D的制约,为此人们将第二种电路稍作改动,使之成为输出电压连续可调的串联型稳压电源。基本电路如图4所示,从电路中我们可看出,此电路较第二种电路多加了一只三极管和几只电阻,R2与D组成BG2的基准电压,R3,R4,R5组成了输出电压取样支路,A点的电位与B点的电位进行比较(由于D的存在,所以B点的电位是恒定的),比较的结果有BG2的集电极输出使C点电位产生变化从而控制BG1的导通程度(此时的BG1在电路中起着一个可变电阻的作用),使输出电压稳定,R4是一个可变阻器,调整它就可改变A点的电位(即改变取样值)由于A点的变化,C点电位也将变化,从而使输出电压也将发生变化。这种电路其输出电压灵活可变,所以在各种电路中被广泛应用。
稳压二极管稳压电路
硅稳压二极管稳压电路的电路它是利用稳压二极管的反向击穿特性稳压的,由于反向特性陡直,较大的电流变化,只会引起较小的电压变化。
固定式三端稳压器输出电压可调电路
用固定式三端集成稳压电路7805设计制作连续可调直流稳压的实际电路如图所示,图中R1取220Ω,R2取680Ω主要用来调整输出电压。输出电压Uo≈Uxx(1+R2/R1),该电路可在5~12V稳压范围内实现输出电压连续可调。
(1)R1为固定电阻值,改变电阻R2的阻值就可获得连续可调的输出电压,输出电压Uo近似值等于Uxx(1+R2/R1)。
(2)最高输出电压受稳压器最大输入电压及最小输入输出压差的限制,该固定式三端集成稳压集成电路7805最大输入电压为35V,输入输出差要保持2V以上,因此该电路中由于稳压器的直流输入电压为+14V,所以该电路的输出最大值为+12V。
(3)在稳压器的稳压范围内,其稳压精度可达±0.03。
PC电源工作原理
PC的电源盒作用是把交流220V的市电转换来所需要的低压直流电,以来驱动我们的设备。主要采用脉冲变压器耦合型开关稳压电源,主要的转换过程为:
高压市电进入电源盒后,先通过扼流线圈和高频电容滤波去除高频杂波和干扰信号,然后经过桥式整流和低频滤波得到高压直流电,接着通过开关电路把高压直流电转成高频脉冲直流电压,之后送到高频开关变压器变压,得到所需的电压后,再将整流、滤波,得到纯净的直流电,这样最后输出供电脑使用的相对适配的低压直流电。
电阻,又称为电阻器
导电体对电流的阻碍作用称着电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。
一、电阻的型号命名方法:
国产电阻器的型号由四部分组成(不适用敏感电阻)
第一部分:主称 ,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。
第二部分:材料 ,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频 、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等
例如:R T 1 1 型普通碳膜电阻
二、电阻器的分类
1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数
1、标称阻值:电阻器上面所标示的阻值。
2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。
允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级
3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。
线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500
非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100
4、额定电压:由阻值和额定功率换算出的电压。
5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。
6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。
7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。
8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。
9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。
在电脑主板上,绝大部分是使用贴片电阻,在电源盒中,用贴片电阻就比较少了,一般用金属膜电阻、组绕电阻和水泥电阻。
电阻阻值有直接编号和色环法,直接编号我不说你也知道,下面主要介绍色环电阻的识别
目前,电子产品广泛采用色环电阻,其优点是在装配、调试和修理过程中,不用拨动元件,即可在任意角度看清色环,读出阻值,使用方便。一个电阻色环由4部分组成[不包括精密电阻]
四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。
下面介绍掌握此方法的几个要点:
(1)熟记第一、二环每种颜色所代表的数。可这样记忆:
棕=1
红=2,
橙=3,
黄=4,
绿=5,
蓝=6,
紫=7,
灰=8,
白=9,
黑=0。
此乃基本功,多复诵,一定要记住!!!!!!!
记准记牢第三环颜色所代表的 阻值范围,这一点是关键。具体做法是:
金色:几点几 Ω
黑色:几十几 Ω
棕色:几百几 Ω
红色:几点几 kΩ
橙色:几十几 kΩ
黄色:几百几 kΩ
绿色:几点几 MΩ
蓝色:几十几 MΩ
从数量级来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红是千欧级橙"、黄色是十千欧级的;绿是兆欧级、蓝色则是十兆欧级的。这样划分一下是为了便于记忆。
(3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百 kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。
(4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。
下面举例说明:
例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ
的,按照黄、橙两色分别代表的数"4"和"3"代入,,则其读数为4.3kΩ。第环是金色表示误差为5%。
例2当四个色环依次是棕、黑、橙、金色时,因第三环为橙色,第二环又是黑色,阻值应是整几十kΩ的,按棕色代表的数"1"代入,读数为10 kΩ。第四环是金色,其误差为5%。
大功率电阻
金属膜电阻
线绕电阻,无感性电感电阻
水泥型绕线电阻
贴片电阻
电容电容
电容,又称为电容器
容纳和释放电荷的电子元器件叫做电容,用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF
电容是电子设备中大量使用的电子元件之一,电容的用途非常多,主要有如下几种:
1.隔直流:作用是阻止直流通过而让交流通过。
2.旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路
4.滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。
5.温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6.计时:电容器与电阻器配合使用,确定电路的时间常数。
7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
8.整流:在预定的时间开或者关半闭导体开关元件。
9.储能:储存电能,用于必须要的时候释放。例如相机闪光灯,加热设备等等。(如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
电容就是两块导体(阴极和阳极)中间夹着一块绝缘体(介质)构成的电子元件。电容的种类首先要按照介质种类来分。这当中可分为无机介质电容器、有机介质电容器和电解电容器三大类。不同介质的电容,在结构、成本、特性、用途方面都大不相同。
一、电容器的型号命名方法
国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、
分类和序号。
第一部分:名称,用字母表示,电容器用C。
第二部分:材料,用字母表示。
第三部分:分类,一般用数字表示,个别用字母表示。
第四部分:序号,用数字表示。
用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介
二、电容器的分类
1、按照结构分三大类:固定电容器、可变电容器和微调电容器。
2、按电 解质 分类有:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等。
3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。
4、频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器。
5、低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。
6、滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。
7、调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。
8、高频耦合:陶瓷电容器、云母电容器、聚苯乙烯电容器。
9、低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器。
10、小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。
三、常见的电容器
无机介质电容器:包括大家熟悉的陶瓷电容以及云母电容,在CPU上我们会经常看到陶瓷电容。陶瓷电容的综合性能很好,可以应用GHz级别的超高频器件上,比如CPU/GPU。当然,它的价格也很贵。
有机介质电容器:例如薄膜电容器,这类电容经常用在音箱上,其特性是比较精密、耐高温高压。
双电层电容器:这种电容的电容量特别大,可以达到几百f(f=法,电容量单位,1f=100000μf)。因此这种电容可以做UPS的电池用,作用是储存电能。
电解电容器:由于主板、显卡等产品使用的基本都是电解电容,因此这是我们要讲的重点。大家熟悉的铝电容,钽电容其实都是电解电容。
电解电容器特点一:单位体积的电容量非常大,比其它种类的电容大几十到数百倍。
电解电容器特点二:额定的容量可以做到非常大,可以轻易做到几万μf甚至几f(但不能和双电层电容相比)。
电解电容器特点三:价格比其它种类具有压倒性优势,因为电解电容的组成材料都是普通的工业材料,比如铝等等。制造电解电容的设备也都是普通的工业设备,可以大规模生产,成本相对比较低。
基础篇:电感电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH),1H=10^3mH=10^6uH。
如果两个线圈互相靠近,当其中一个线圈中电流所产生的磁通有一部分与另-个线圈的磁通相环链,那么,这个线圈中的电流发生变化时,会在另一个线圈中产生感应电动势,这种现象称为"互感"。电感是"自感"和"互感"的总称,自感的符号用"L",互感的符号用"M"。电感的单位是"亨利",简称"亨"。电感元件在电路中除了储存有磁场能量外,通过电感元件的电流不能突变,电感元件在直流电路中相当于短路(忽略线圈的电阻)。在交流电路中,电感元件的感抗随频率的增高而增大。
一、电感的分类
按电感形式分类:固定电感、可变电感。
按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。
按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈
按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。
二、电感线圈的主要特性参数
1、电感量L
电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。
2、感抗XL
电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL
3、品质因素
品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。 线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。
4、分布电容
线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。
三、常用线圈
1、单层线圈
单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。
2、蜂房式线圈
如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小
3、铁氧体磁芯和铁粉芯线圈
线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。
4、铜芯线圈
铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。
5、色码电感器
色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。
6、阻流圈(扼流圈)
限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。
7、偏转线圈
偏转线圈是电视机扫描电路输出级的负载,偏转线圈要求:偏转灵敏度高、磁场均匀、Q值高、体积小、价格低。
二极管二极管的工作原理
晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。
一、根据构造分类
半导体二极管主要是依靠PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:
1、点接触型二极管
点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。
2、键型二极管
键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。其特性介于点接触型二极管和合金型二极管之间。与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。多作开关用,有时也被应用于检波和电源整流(不大于50mA)。在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。
3、合金型二极管
在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。正向电压降小,适于大电流整流。因其PN结反向时静电容量大,所以不适于高频检波和高频整流。
4、扩散型二极管
在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。
5、台面型二极管
PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。初期生产的台面型,是对半导体材料使用扩散法而制成的。因此,又把这种台面型称为扩散台面型。对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。
6、平面型二极管
在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。
7、合金扩散型二极管
它是合金型的一种。合金材料是容易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。此法适用于制造高灵敏度的变容二极管。
8、外延型二极管
用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。
9、肖特基二极管
基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。
二、根据用途分类
1、检波用二极管
就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。
2、整流用二极管
就原理而言,从输入交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。
3、限幅用二极管
大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。
4、调制用二极管
通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。
5、混频用二极管
使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。
6、放大用二极管
用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。
7、开关用二极管
有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。
8、变容二极管
用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, 使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。
9、频率倍增用二极管
对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显著地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。
10、稳压二极管
是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型。
稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。
10-1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
10-2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。
11、PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是“本征”意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和“本征”层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,“本征”区的阻抗很高;在直流正向偏置时,由于载流子注入“本征”区,而使“本征”区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
12、 雪崩二极管 (Avalanche Diode)
它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。
13、江崎二极管 (Tunnel Diode)
它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。其主要参数有峰谷电流比(IP/PV),其中,下标“P”代表“峰”;而下标“V”代表“谷”。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。
14、快速关断(阶跃恢复)二极管 (Step Recovary Diode)
它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成“自助电场”。由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个“存贮时间”后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的“自助电场”缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。
15、肖特基二极管 (Schottky Barrier Diode)
它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
16、阻尼二极管
具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。
17、瞬变电压抑制二极管
TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。
18、双基极二极管(单结晶体管)
两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。
19、发光二极管
用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。
三、根据特性分类
点接触型二极管,按正向和反向特性分类如下。
1、一般用点接触型二极管
这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。
2、高反向耐压点接触型二极管
是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。
3、高反向电阻点接触型二极管
正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。
4、高传导点接触型二极管
它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。
晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别
常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用
晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态
截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。
根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。
使用多用电表检测三极管
三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。
三极管类型的判别: 三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。
电子三极管
在弗莱明为改进无线电检波器而发明二极管的同时,美国物理学博士弗雷斯特也在潜心研究检波器。正当他的研究步步深入时,传来了英国的弗莱明发明成功真空二极管的消息,使他大受震动。是改弦易辙还是继续下去呢?他想到弗莱明的二极管可用于整流和检波,但还不能放大电信号。于是,德弗雷斯特又 经过两年的研制,终于改进了弗莱明的二极管,作出了新的发明。在二极管的阴极和阳极中间插入第三个具有控制电子运动功能的电极(棚极)。棚极上电压的微弱信号变化,可以调制从阴极流向阳极的电流,因此可以得到与输入信号变化相同,但强度大大增加的电流。这就是德弗雷斯特发明的三极管的“放大”作用。
1912年,德弗雷斯特又成功地做了几个三极管的连接实验,得到了比单个三极管大得多的放大能力。很快,德弗雷斯特研制出第一个电子放大器用于电话中继器,放大微弱的电话信号,他是在电话中使用电子产品的第一人。此外,三极管还可振荡产生电磁波,也就是说,所以,国外许多人都将三极管的发明看作是电子工业真正的诞生。
MOS场效应管
即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。
国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。
MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。下面介绍检测方法。
1.准备工作
测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。
2.判定电极
将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。
3.检查放大能力(跨导)
将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。
目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。
VMOS场效应管
VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从图1上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS场效应管。
VMOS管的检测方法
1.判定栅极G
将万用表拨至R×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。
2.判定源极S、漏极D
由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。
3.测量漏-源通态电阻RDS(on)
将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。
由于测试条件不同,测出的RDS(on)值比手册中给出的典型值要高一些。例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。
4.检查跨导
将万用表置于R×1k(或R×100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。
注意事项:
(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P沟道管,测量时应交换表笔的位置。
(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。
(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。例如美国IR公司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。
(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000μS。适用于高速开关电路和广播、通信设备中。
(5)使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30W
场效应晶体管
场效应晶体管(FET)简称场效应管,它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
场效应晶体管的好坏的判断。
先用MF10型万用表R*100KΩ挡(内置有15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再该用万用表R*1Ω挡,将负表笔接漏极(D),正表笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。
晶振常说的晶振一般叫做晶体谐振器,是一种机电器件,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。这种晶体有一个很重要的特性,如果给他通电,他就会产生机械振荡,反之,如果给他机械力,他又会产生电,这种特性叫机电效应。他们有一个很重要的特点,其振荡频率与他们的形状,材料,切割方向等密切相关。由于石英晶体化学性能非常稳定,热膨胀系数非常小,其振荡频率也非常稳定,由于控制几何尺寸可以做到很精密,因此,其谐振频率也很准确。
晶振:石英晶体振荡器(crystal oscillator),
谐振器(Resonator):在电路中等效作用是一个具有选频作用的网络,是振荡电路核心元器件,决定了振荡器的频率稳定度(Frequency stability)种类有:石英晶体,陶瓷,LC,介质等材料的谐振器。石英晶体与放大电路配合如果行成正反馈,并且回路放大系数大于一则产生自激振荡信号。这就是石英晶体器的基本原理。
1、 晶振:即所谓石英晶体谐振器和石英晶体时钟振荡器的统称。不过由于在消费类电子产品中,谐振器用的更多,所以一般的概念中把晶振就等同于谐振器理解了。后者就是通常所指钟振。
2、 分类。首先说一下谐振器。
谐振器一般分为插件(Dip)和贴片(SMD)。插件中又分为HC-49U、HC-49U/S、音叉型(圆柱)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49U/S一般称49S,俗称“矮型”。音叉型按照体积分可分为3*8,2*6,1*5,1*4等等。贴片型是按大小和脚位来分类。例如7*5(0705)、6*3.5(0603),5*3.2(5032)等等。脚位有4pin和2pin之分。
而振荡器也是可以分为插件和贴片。插件的可以按大小和脚位来分。例如所谓全尺寸的,又称长方形或者14pin,半尺寸的又称为正方形或者8pin。不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。而从不同的应用层面来分,又可分为OSC(普通钟振),TCXO(温度补偿),VCXO(压控),OCXO(恒温)等等。
指针式万用表使用方法说明:指针式万用表是业余维修人员使用时的首选。另外我们在以后的内容中提供的测量方法和数据,也是以指针式万用表为准。为此有必要介绍一下指针式万用表的使用方法,供需要了解此内容的读者参考。
万用表的使用方法
万用表可以测量电阻、直流电压、交流电压和直流电流等物理量。
下面我们以 U-20 型万用表为例说明万用表的使用方法(万用表面板见附图 1)。在测量电阻、电压、电流以前,应先检查表针是否在 0 刻度的位置上;如不在 0 的位置上,可调整表中心机械调零螺丝使表针指在 0 位置上。
表针调零后,再把两根表笔插在插孔中,红色表笔插在注有 “ +”(读正)的插孔内,黑色表笔插在注有 “ -”(读负)的插孔内。另外还应检查一下电池是否接好(此表使用两节5 号电池)。
一、测量电阻的方法
(1) 选挡:欧姆挡的标志是 Ω,在 Ω 挡的两条框线内有 ×1、 ×10、 ×100、 ×1k 四挡。根据要测量的电阻数值选择合适的挡位,如我们要测量一下一只 30kΩ 的电阻是否准确,就要选择 ×1k 挡(“ ×”是乘的意思),这样才能保证表针在测量时指在刻度线中间位置附近(刻度线中间的刻度清晰,测量误差也小),测量不知阻值的电阻,则要用各挡试一下,找出能使表针停在中间左右的挡位。
(2) 欧姆调零:选好挡以后,要先进行欧姆调零,即把两根表笔短路(测试表笔的铜头碰在一起),看指针是否指在第 1 条刻度线(最上面一条刻度线)右边零的位置上,如不在零位上就应调整欧姆调零旋钮,使指针达到零位,若调欧姆调零旋钮调到头指针还调不到零,则说明电表内电池电压太低了,应更换新电池。每换一挡都要调零。
(3) 表笔接法:测量电阻时,直接用万用表的两根表笔接触被测电阻的两根引出线即可。但应注意两只手切忌同时捏住表笔的两根铜头(如附图 2 下图所示),那样做等于把手的电阻并联在被测电阻两端了,会大大影响测量准确性。
(4) 读数方法:根据被测电阻的大小,表针停留在表盘中的某一位置,观察表针在第 1 条刻度线(标有 Ω 的一条)上所指示的数值,然后乘上选择开关所在的挡位,即这个电阻的阻值。比如指针指在第一条刻度线 40 的位置上,而选择开关在 ×10 的位置上,则这时被测电阻的阻值为 40×10 =400Ω。另外刻度线的标志数字是间隔标着的,如第一条刻度线 0 以后就是 5,5 以后是 10……中间的数字没标注,这时可根据刻度盘上的小刻度来算出。比如 0 到 5 之间有 5 个大格,每个大格就代表数字 1,比如指针指在第三个大格上,那就代表数字 3,依此类推。
二、直流电压的测量
(1) 选挡:直流电压挡用 “V -” 表示(“V”表示电压,“ -”表示直流)也有的万用表用 “DC” 表示。在此表 “V -” 框线内有 0.5、2.5、10、50、250、500 六挡。选择电压挡时,如已知一电压为 20V 左右,为了检查这个电压的准确数值,就可以选择比这个被测电压值略高的 50V 挡。如果某被测电压不知数值,则应先从500V 挡开始选取,如表针动得很小,则说明这个被测电压较低,再依次选择以下各挡,使指针能够指示在较清晰的刻度上。电压的六个挡所标数字表示这一挡能够测量的最高电压,即满度时的电压值。比如 50 这一挡,就表示这挡只能测量 50V 以下的电压,也就是指针指在最右边的时候是 50V。
(2) 表笔接法:测量直流电压,红表笔要接被测电压的正极端,黑笔要接被测电压的负极端。
(3) 读数方法:根据表针停留的位置,看刻度盘第②条(标有 mA、V?)刻度上的数字,再根据选择开关所在的挡位读出被测电压的数值。如选择开关在 50 挡上,而指针在 20 的刻度上,则这时被测电压为 20V。这样的读数比较好读,因为表盘上就有 0 ~ 50 的刻度。如选择的挡位表盘上没有直接的标数,就要稍微换算一下。比如选择 500V 这挡,表盘的刻度右边没有 500 这个标志数,只有 50 和25 这两条标志数。这时就要利用 50 或 25 这两条中的任一条刻度来换算,一般选能和 10 成倍数的这样较容易换算。比如用 500V 挡就可以选 0 ~ 50 这条刻度线,把读出的数都乘 10 就可以了。若用 500V 这挡指针停在 20 的位置,实际被测电压的数值就是 200V。
三、交流电压的测量
(1) 选挡:交流电压挡用 “V ~ ”(“V”表示电压,“ ~ ”表示交流),也有的万用表用“AC” 表示。在 “V ~” 框线内有 10、50、250、500 四挡。选挡方法同直流电压挡。附图 4 万用表测量电流时的接法
(2) 表笔接法:测量交流电压时,表笔并联在被测电压两端,表笔不分正、负。
(3) 读数方法:500、250、50 三挡读第 2条刻度线,10V 挡读第 3 条标有 “10V ~ ” 的刻度线。读数方法同直流电压挡。
四、直流电流的测量
(1) 选挡:直流电流挡用 “mA” 表示,在“mA” 框线内有 0.1、5、50、500 四挡。选挡方法同直流电压挡。
(2) 表笔接法:测量直流电流表笔串联在电路中间,并且红表笔应接在靠近电源正极一边,黑表笔接在靠近电源负极一边。一般在电路图中把要测量电流的地方画一个 “ ×”,即表示从这个地方把电路断开,串入电流表。
(3) 读数方法:读第 2 条刻度线的标志数,读数原则同直流电压挡。
除了以上用途外,U-20 型万用表还可以测量三极管的 hFE,即集电极电流 “Ic” 与基极电流 “Ib” 之比,也就是β。
测量方法是:首先将选挡开关旋至 Ω ×10 挡,将测试表笔短路,调节欧姆调零旋钮,使指针指在 0 位,分开测试表笔,把选择开关旋至 hFE挡,将被测三极管插入 “PNP” 或“NPN”(表上标注“N”或“P”)的插孔内,注意管子的发射极、基极、集电极要分别插入相应的 e、b、c插孔,不能插错。读数看第 4 条刻度(绿色),直接读出数值。
整流电路整流,就是把交流电变为直流电的过程。
由于电力网供给用户的是交流电,而我们所使用各种家电之类的都需要用直流电,所以,就需要这个整流电路把交流电变为直流电,以便使用。
我们可以利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。其中,晶体二级管就是很方便实用的元器件。下面我给大家讲一下利用晶体二极管组成的各种整流电路。
一、半波整流电路
图1是一种最简单的整流电路。它由电源变压器 B 、整流二极管 D 和负载电阻 Rfz 组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D再把交流电变换为脉动直流电。
下面从图2的波形图上看着二极管是怎样整流的
图2 半波整流波形
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。在0~K时间内,e2 为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,
e2 通过它加在负载电阻 Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。这时 D 承受反向电压,不导通, Rfz 上无电压。在π~2π时间内,重复 0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过 Rfz ,在 Rfz 上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc=0.45 e2 )因此常用在高电压、小电流的场合,因此一般很少采用.
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a、e2b ,构成 e2a 、D1、Rfz 与 e2b D2、Rfz ,两个通电回路。
全波整流电路的工作原理,可用图4 所示的波形图说明。在0~π 间内,e2a 对 Dl 为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b; 对 D2 为反向电压,D2 不导通(见图4(b)。在π-2π时间内,e2b 对 D2 为正向电压,D2 导通,在 Rfz 上得到的仍然是上正下负的电压;e2a; 对D1 为反向电压,D1 不导通(见图4(C)。
如此反复,由于两个整流元件 D2 轮流导电,结果负载电阻Rfz 上在正、负两个半周作用期间,都有同一方向的电流通过,如图4(b)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc =0.9 e2,比半波整流时大一倍)。
图3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。
三、桥式整流电路图5(a )为桥式整流电路图,(b)图为其简化画法。
图5(a)为桥式整流电路图 图5(b)图为其简化画法
桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。
桥式整流电路的工作原理如下:e2 为正半周时,对 D3 和方向电压,Dl,D3 导通;对 D2 、D4 加反向电压,D2 、D4 截止。电路中构成 e2 、Dl、Rfz 、D3 通电回路,在 Rfz 上形成上正下负的半波整洗电压,
e2 为负半周时,对 D2 、D4 加正向电压,D2 、D4 导通;对 D1 、D3 加反向电压,D1 、D3 截止。电路中构成 e2 、D2、Rfz 、D4 通电回路,同样在 Rfz 上形成上正下负的另外半波的整流电压。
上述工作状态分别如图6(A) (B)所示。
如此重复下去,结果在 Rfz 上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半.
滤波电路交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。电容器的容量越大,负载电阻值越大,充电和放电所需要的时间越长。这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务
图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9a所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2 向负载电阻Rfz 提供电流的同时,向电容器C充电,一直充到最大值。e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D 受反向电压,不能导通,于是Uc便通过负载电阻Rfz 放电。由于C和Rfz 较大,放电速度很慢,在e2 下降期间里,电容器C上的电压降得不多。当e2 下一个周期来到并升高到大于Uc时,又再次对电容器充电。如此重复,电容器C两端(即负载电阻Rfz :两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。通常应根据负载电用和输出电说的大小选择最佳电容量。表中所列滤波电容器容量和输出电流的关系,可供参考。 电容器的耐压值一般取Use的1.5倍。
输出电流
2A左右
1A左右
0.5-1A左右
0.1-0.5A
100-50mA
50mA以下
滤波电容
4000u
2000u
1000u
500u
200u-500u
200u
串联型稳压电路串联型稳压电路是最常用的电子电路之一,它被广泛地应用在各种电子电路中,它有三种表现形式。
1、如图1所示,这是一种最简单的串联型稳压电路(有些书称它是并联型稳压电路,我个人始终认为应是串联型稳压电路),电阻RL是负载电阻,R为稳压调整电阻有叫限流电阻,D为稳压管。这种电路输出的稳压值等于D的标称稳压值,其工作原理是利用稳压管工作在反向击穿的特性来实现的。图2是稳压管的伏安特性曲线,从此曲线中我们看到反向电流在一定范围内大幅变化时其端点的电压基本不变。当RL变小时,流过RL的电流增加,但流过D的电流却减少,当RL变大时,流过RL的电流减少,但流过D的电流却增大,所以由于D的存在使流过R的电流基本恒定,在R上的压降也基本不变,所以使其输出的电压也基本保持不变。
当负载要求较大的输出电流时,这种电路就不行了,这是因为在此时R的阻值必须减少,由于R的减少就要求D有较大的功耗,但因目前一般的稳压管的功耗均较小,所以这种电路只能给负载提供几十毫安的电流,彩电30V调谐电压通常都以这种电路来取得。
2、如图3所示,这种电路是针对上面所说电路的缺点而改进的电路,与第一种电路不同的是将电路中的R换成晶体管BG,目的是扩大稳压电路的输出电流。我们知道,BG的集电极电流IC=β*Ib,β是BG的直流放大系数,Ib是晶体管的基极电流,比如现在要向负载提供500MA的电流,BG的β=100,那末电路只要给BG的基极提供5MA的电流就行了。所以这种稳压电路由于BG的加入实际上相当于将第一种稳压电路扩充了β倍,另外由于BG的基极被D嵌定在其标称稳压值上,因此这种稳压电路输出的电压是V0=VD-0.7v,0.7V是BG的B,E极的正偏压降。
在实际应用中,我们常常对不同的电路提供不同的供电电压,即要求稳压电源的输出电压可调,为此出现了第三种形式的串联形稳压电路。
3、第二种稳压电路虽能提供较大的输出电流,但其输出电压却受到稳压管D的制约,为此人们将第二种电路稍作改动,使之成为输出电压连续可调的串联型稳压电源。基本电路如图4所示,从电路中我们可看出,此电路较第二种电路多加了一只三极管和几只电阻,R2与D组成BG2的基准电压,R3,R4,R5组成了输出电压取样支路,A点的电位与B点的电位进行比较(由于D的存在,所以B点的电位是恒定的),比较的结果有BG2的集电极输出使C点电位产生变化从而控制BG1的导通程度(此时的BG1在电路中起着一个可变电阻的作用),使输出电压稳定,R4是一个可变阻器,调整它就可改变A点的电位(即改变取样值)由于A点的变化,C点电位也将变化,从而使输出电压也将发生变化。这种电路其输出电压灵活可变,所以在各种电路中被广泛应用。
稳压二极管稳压电路
硅稳压二极管稳压电路的电路它是利用稳压二极管的反向击穿特性稳压的,由于反向特性陡直,较大的电流变化,只会引起较小的电压变化。
固定式三端稳压器输出电压可调电路
用固定式三端集成稳压电路7805设计制作连续可调直流稳压的实际电路如图所示,图中R1取220Ω,R2取680Ω主要用来调整输出电压。输出电压Uo≈Uxx(1+R2/R1),该电路可在5~12V稳压范围内实现输出电压连续可调。
(1)R1为固定电阻值,改变电阻R2的阻值就可获得连续可调的输出电压,输出电压Uo近似值等于Uxx(1+R2/R1)。
(2)最高输出电压受稳压器最大输入电压及最小输入输出压差的限制,该固定式三端集成稳压集成电路7805最大输入电压为35V,输入输出差要保持2V以上,因此该电路中由于稳压器的直流输入电压为+14V,所以该电路的输出最大值为+12V。
(3)在稳压器的稳压范围内,其稳压精度可达±0.03。
PC电源工作原理
PC的电源盒作用是把交流220V的市电转换来所需要的低压直流电,以来驱动我们的设备。主要采用脉冲变压器耦合型开关稳压电源,主要的转换过程为:
高压市电进入电源盒后,先通过扼流线圈和高频电容滤波去除高频杂波和干扰信号,然后经过桥式整流和低频滤波得到高压直流电,接着通过开关电路把高压直流电转成高频脉冲直流电压,之后送到高频开关变压器变压,得到所需的电压后,再将整流、滤波,得到纯净的直流电,这样最后输出供电脑使用的相对适配的低压直流电。